

M295HD High Density Near Edge Wax/Resin

PRODUCT DESCRIPTION

This wax/resin is one of the darkest near edge ribbons for flexible packaging applications. With print speeds of up to 26 IPS (660mm per second) combined with its extreme darkness, this ribbon is the clear choice for any high-speed flexible packaging application. Its ability to adhere to a variety of substrates makes it an easy to use, drop-in ready product. With our exclusive backcoat technology and anti-static properties for maximum printhead protection, this wax/resin ribbon is the ideal choice for a wide range of flexible

RECOMMENDED SUBSTRATES

Polyester, polyethylene, polyolefin, polyethylene, nylon

PERFORMANCE CHARACTERISTICS

- Anti-static
- FDA (indirect food contact)
- Halogen-free
- High-density
- Printhead protection
- Proprietary backcoat

RECOMMENDED APPLICATIONS

BEVERAGES

CONDIMENTS

COSMETICS

FLEXIBLE PACKAGING

PHARMACEUTICAL

PRODUCE

RETAIL

M295HD High Density Near Edge Wax/Resin

RIBBON PROPERTIES

DESCRIPTION	RESULT	TEST METHOD
Ink	Wax/Resin	
Color	Black	Visual
Total Thickness	6.3 ± 0.5µ	Micrometer
Base Film Thickness	$4.8 \pm 0.3 \mu$	Micrometer
Ink Thickness	1.5 ± 0.2µ	Micrometer
Ink Melting Point	82°C (179°F)	Differential Scanning Calorimeter

CONVERSION CHART

Millimeters (mm) to Inches = mm ÷ 25.4

Meters (m) to Feet (ft) = $m \div 0.3048$

 C° to $F^{\circ} = (1.8 \text{ X } C^{\circ}) + 32 = F^{\circ}$

Thousand square inches (MSI) to $m^2 = MSI \times 0.645$

Inches to Millimeters (mm) = Inches ÷ 0.03937

Feet (ft) to Meters (m) = Feet \div 3.2808

 F° to $C^{\circ} = (F^{\circ} \div 1.8) - 17.77$

 $MSI = m^2 \div 0.645$

